1,744 research outputs found

    The emerging era of supramolecular polymeric binders in silicon anodes

    Get PDF
    Silicon (Si) anode is among the most promising candidates for the next-generation high-capacity electrodes in Li-ion batteries owing to its unparalleled theoretical capacity (4200 mA h g−1 for Li4.4Si) that is approximately 10 times higher than that of commercialized graphitic anodes (372 mA h g−1 for LiC6). The battery community has witnessed substantial advances in research on new polymeric binders for silicon anodes mainly due to the shortcomings of conventional binders such as polyvinylidene difluoride (PVDF) to address problems caused by the massive volume change of Si (300%) upon (de)lithiation. Unlike conventional battery electrodes, polymeric binders have been shown to play an active role in silicon anodes to alleviate various capacity decay pathways. While the initial focus in binder research was primarily to maintain the electrode morphology, it has been recently shown that polymeric binders can in fact help to stabilize cracked Si microparticles along with the solid–electrolyte-interphase (SEI) layer, thus substantially improving the electrochemical performance. In this review article, we aim to provide an in-depth analysis and molecular-level design principles of polymeric binders for silicon anodes in terms of their chemical structure, superstructure, and supramolecular interactions to achieve good electrochemical performance. We further highlight that supramolecular chemistry offers practical tools to address challenging problems associated with emerging electrode materials in rechargeable batteries

    Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors

    Get PDF
    Electrolyte transport through an array of 20 nm wide, 20 μm long SiO_2 nanofluidic transistors is described. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source−drain biases >5 V, the current exhibits a sharp, nonlinear increase, with a 20−50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for energy conversion devices are discussed

    Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries

    Get PDF
    A new strategy for the synthesis of a covalent triazine framework (CTF‐1) was introduced based on the cyclotrimerization reaction of 1,4‐dicyanobenzene using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) under ionothermal conditions. LiTFSI not only served as a catalyst, but also facilitated the in situ generation and homogeneous distribution of LiF particles across the framework. The hierarchical structure resulting upon integration of CTF‐LiF onto an airlaid‐paper (AP) offered unique features for lithium metal anodes, such as lithiophilicity from CTF, interface stabilization from LiF, and sufficient lithium storage space from AP. Based on this synergistic effect, the AP‐CTF‐LiF anode exhibited stable cycling performance even at a current density of 10 mA cm−

    Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing

    Get PDF
    Highly efficient and stable MoS 2 nanocrystals on graphene sheets (MoS 2 /GR) are synthesized via a hybrid microwave annealing process. Through only 45 second-irradiation using a household microwave oven equipped with a graphite susceptor, crystallization of MoS 2 and thermal reduction of graphene oxide into graphene are achieved, indicating that our synthetic method is ultrafast and energy-economic. Graphene plays a crucial role as an excellent microwave absorber as well as an ideal support material that mediates the growth of MoS 2 nanocrystals. The formed MoS 2 /GR electrocatalyst exhibits high activity of hydrogen evolution reaction with small onset overpotential of 0.1 V and Tafel slope of 50mV per decade together with an excellent stability in acid media. Thus our hybrid microwave annealing could be an efficient generic method to fabricate various graphene-based hybrid electric materials for broad applications.open2

    Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries

    Get PDF
    We have demonstrated that even small structural variations on the imide nitrogens of naphthalenediimides bearing identical Li-ion binding sites can cause dramatic effects in the performance of organic rechargeable batteries. In particular, naphthalenedimide dilithium salt showed excellent cycling with a capacity of 130 mA h g(-1) at potentials as high as 2.5 V vs. Li/Li+.

    A carbon nanotubes-silicon nanoparticles network for high performance lithium rechargeable battery anodes

    Get PDF
    As an effort to address the chronic capacity fading of Si anodes and thus achieve their robust cycling performance, herein, we develop a unique electrode in which silicon nanoparticles are embedded in the carbon nanotubes network. Utilizing robust contacts between silicon nanoparticles and carbon nanotubes, the composite electrodes exhibit excellent electrochemical performance : 95.5% capacity retention after 140 cycles as well as rate capability such that at the C-rate increase from 0.1C to 1C to 10C, the specific capacities of 850, 698, and 312 mAh/g are obtained, respectively. The present investigation suggests a useful design principle for silicon as well as other high capacity alloying electrodes that undergo large volume expansions during battery operations.

    A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    Get PDF
    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. Ahigh concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm(-2)). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance.

    A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    Get PDF
    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance

    Spiers Memorial Lecture: Molecular mechanics and molecular electronics

    Get PDF
    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable [2]rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits

    Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    Get PDF
    We have explored a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single crystal Sr2_2VO3_3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a non-trivial C4C_4 (2×\times2) order, not achievable by thermal excitation with unpolarized current. Our tunneling spectroscopy study shows that the induced C4C_4 (2×\times2) order has characteristics of plaquette antiferromagnetic order in Fe layer and strongly suppressed superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4C_4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.Comment: 33 pages, 16 figure
    corecore